
Journal of Computer Virology and Hacking Techniques manuscript No.
(will be inserted by the editor)

An Investigation of Byte N-Gram Features for Malware
Classification

Edward Raff · Richard Zak · Russell Cox · Jared Sylvester · Paul
Yacci · Rebecca Ward · Anna Tracy · Mark McLean · Charles Nicholas

Received: 30 March 2016 / Accepted: 6 August 2016
c© Springer-Verlag France (outside the USA) 2016

Abstract Malware classification using machine learn-
ing algorithms is a difficult task, in part due to the
absence of strong natural features in raw executable
binary files. Byte n-grams previously have been used
as features, but little work has been done to explain
their performance or to understand what concepts are
actually being learned.

In contrast to other work using n-gram features, in
this work we use orders of magnitude more data, and we
perform feature selection during model building using
Elastic-Net regularized Logistic Regression. We com-
pute a regularization path and analyze novel multi-byte
identifiers. Through this process, we discover significant
previously unreported issues with byte n-gram features
that cause their benefits and practicality to be overes-
timated. Three primary issues emerged from our work.
First, we discovered a flaw in how previous corpora were
created that leads to an over-estimation of classifica-
tion accuracy. Second, we discovered that most of the
information contained in n-grams stem from string fea-
tures that could be obtained in simpler ways. Finally, we

The final publication is available at Springer via
http://dx.doi.org/10.1007/s11416-016-0283-1

E. Raff · R. Zak · C. Nicholas
Computer Science and Electrical Engineering, University of
Maryland, Baltimore County, 1000 Hilltop Circle Baltimore,
MD 21250 USA
E-mail: raff.edward@umbc.edu
E-mail: richard.zak@umbc.edu
E-mail: nicholas@umbc.edu

R. Cox · J. Sylvester · P. Yacci · R. Ward · A. Tracey · M.
McLean
Laboratory for Physical Sciences, 8050 Greenmead Drive Col-
lege Park, MD 20740
E-mail: jared@lps.umd.edu
E-mail: mrmclea@lps.umd.edu

demonstrate that n-gram features promote overfitting,
even with linear models and extreme regularization.

Keywords malware classification · byte n-grams ·
multi-byte identifier · elastic-net

1 Introduction

Choosing appropriate and informative features is the
prerequisite step to all effective applications of machine
learning. Initial feature selection is a particularly difficult
task for malware analysis due to the lack of natural or
obvious features. The use of domain knowledge in feature
extraction is often desirable, but complicated in this
case by a malicious adversary that may intentionally
corrupt or break standard rules.

Byte n-grams have been used as features in a number
of works, and are one of the most common feature
types used for static analysis [34]. By treating a file
as a sequence of bytes, byte n-grams are extracted by
looking at the unique combination of every n consecutive
bytes as an individual feature. Most experiments from
other works range from n = 1 to n = 8 bytes, and
are generally reported to be effective for any n ≥ 2

with papers determining various different values of n as
performing the best [34]. Byte n-grams are particularly
attractive since they require no knowledge of the file
format, do not require any dynamic analysis, and could
potentially learn information from both headers and
the binary code sections of an executable[24]. The n-
gram approach’s lack of domain knowledge requirement
means a byte n-gram system could be used for other file
formats, such as PDFs, without being re-engineered.

Given these benefits combined with reported accu-
racies of 95% or better, we sought to investigate what

http://dx.doi.org/10.1007/s11416-016-0283-1

2 Edward Raff et al.

features are learned by byte n-grams and why they per-
form so well. In this paper we examine performance for
n ∈ {4, 6}. We find 6-grams to perform best, and use
them as the basis of our investigation into what concepts
are actually being learned by our model.

1.1 Overview of our contributions

Some of the potential shortcomings with byte level n-
grams in the realm of malware classification have been
discussed before [35], but we are not aware of any work
that attempts to assess their true effectiveness or gen-
eralization to new data sets. To do this assessment, we
use multiple separate sources of data for our experi-
ments, divided into two higher level “groups” and given
an overview of this data in section 3.

We began our investigation by attempting to repro-
duce previous work, but our larger collection of data
resulted in more potential features. For this reason we
performed an evaluation of feature selection methods
(section 4). As part of improving the feature-selection
process we used Elastic-Net regularized Logistic Regres-
sion as our classifier, which performs implicit feature
selection. In subsection 4.1, we examine both the final
model performance, and the regularization path, where
we discover significant over-fitting of our n-gram models
and a possible methodological flaw in the data-collection
process of some, if not most, previous papers.

In section 5 we investigate the nature of our features,
and determine why they don’t work as well as expected.
We present evidence that our n-grams are learning string-
like features rather than information from the code or
other sections of an EXE file. Based on these results,
we devise the Multi-Byte Identifier in subsection 5.1 as
a technique to help further evaluate n-grams for EXE
files. The final experiment in our investigation is covered
in subsection 5.2, where we provide evidence that most
of the generalizable information may be coming from
ASCII strings. Given these surprising results, we discuss
what we believe are the major weaknesses of the byte
n-gramming approach in section 6.

2 Related Work

The problem of distinguishing malicious from benign
executables has been long studied, with many earlier
attempts relying on hand crafted features [19]. We have
a particular interest in byte n-grams for this problem, as
they require no domain knowledge to apply. This makes
it feasible for a small team and code base to be used for
a wide variety of file types, provided adequate training
data can be obtained. Kephart et al. [16] provide one of

the earliest instances of n-grams for malware analysis,
using byte 3-grams to classify infected boot-sectors.

For the case of byte n-grams for Microsoft PE bi-
naries, Schultz et al. [33] provide the earliest work of
which we are aware. Shultz et al. considered DLL im-
ports, Strings, and byte n-grams as features, evaluating
them using a number of different classifiers. In their work
a Naive Bayes classifier had the best overall accuracy at
97.1%, followed by an ensemble of Naive Bayes classifiers
using byte n-grams at 96.9%. Their n-gram based model
also had the highest detection rate of malware. Shultz et
al. compared against a simple signature based approach,
which achieved only 49.3% accuracy, showing the im-
portance of expanding beyond signatures in defending
against new, unseen malware. Abou-Assaleh et al. [1]
made the connection with techniques in Natural Lan-
guage Processing work and using a feature selection step,
reporting 98% cross validation scores using a nearest
neighbor classifier.

Kolter and Maloof [17, 18] looked exclusively at byte
n-grams for classifying benign vs. malicious executables,
as well as classifying malicious EXEs by payload method.
They performed their initial work on a smaller set of
1,037 files, by which they settled on using 4-grams for
their features and AdaBoost [8] with C4.5-style decision
trees[28] consistently provided the best results. In ad-
dition they used Information Gain to prune the set of
4-grams down to the top 500 used for their model. This
approach obtained an AUC of 0.984. Testing on a larger
set of 3,622 files reached an impressive AUC of 0.996
for the benign vs malicious task. In attempts to explore
the information captured by their model, Kolter and
Maloof did discover evidence of string features being
extracted by their model, but make no effort to quantify
their significance to the overall model. We establish that
strings make a significant portion of the information
learned and discriminative power in section 5. Their
work has been regularly replicated, for example, by Jain
and Meena [15]. For comparison purposes, we replicate
their approach in our work as well using 4 and 6-gram
features.

Most work on using byte n-grams for malware clas-
sification follow the overall method set by Kolter and
Maloof: choose a value of n, use some feature ranking
scheme to select a few hundred (up to say one thousand)
n-grams, and then evaluate (using cross validation or
with a random training / testing split) with one or more
classifiers. In our work we mostly eliminate the need
for a feature selection step by choosing a model that
performs feature selection implicitly, as discussed in sec-
tion 4. Since their work, there has been a significant
amount of follow up work using byte n-grams, often as

An Investigation of Byte N-Gram Features for Malware Classification 3

a major component in a larger system or improving a
component of the process.

One line of research has been on improved feature
selection, as we do by using the Elastic-Net regularized
model discussed in subsection 4.1. Reddy and Pujari
[30] looked at improving the ROC curve by performing
a selection on benign and malicious n-grams indepen-
dently, though no AUC is given. They note explicitly
the difficulty in analyzing the selected n-grams, which
we help to resolve in this paper. Henchiri and Japkowicz
[13] sought to improve feature selection by weighting
the feature selection to n-grams that occur in multiple
virus families. Henchiri and Japkowicz also discuss some
of the issues in using cross validation to estimate the
true accuracy of a classification model for benign versus
malicious EXEs, and adjust their cross validation so
that each CV fold has all of a unique malware family in
it. Our use of separate datasets tackles this same bias
issue.

A number of works, such as Elovici et al. [7], Mena-
hem et al. [23], and Masud et al. [21] have looked at
combining n-grams with other features. Masud et al.
fused byte n-grams, opcode n-grams, and DLL function
imports into a larger classification system. They also
evaluated on two datasets, similar to our approach dis-
cussed in subsection 6.1. Masud et al.’s two datasets
have overlap with each-other, where ours are kept com-
pletely disjoint. In their work 4 and 6-grams performed
almost equally and obtained 95.4% and 93.6% on their
two datasets. The hybrid approach presented in their
work obtained 96.3% and 97.6% for 6-grams respectively,
indicating that while n-grams did not perform the best
— they still performed well compared to an approach
which required domain knowledge features. For feature
selection and model construction Masud et al. used the
same approach as Kolter and Maloof. We note as well
that the assembly n-grams in Masud et al. perform worse
than the byte n-grams for n ≥ 2.

Another line of research, to which our work is a
contribution, has included the use of larger datasets.
Moskovitch et al. [25] pushed their dataset up to 30,000
files for n-gramming. Masud et al. [22] used a distributed
system to process 105,388 files, obtaining an accuracy
of 97.2% for their best model. This was achieved using
2000 4-grams selected by Information Gain, and using
an ensemble of C4.5 decision trees.

Researchers have looked at building more sophisti-
cated systems using byte n-grams as a significant compo-
nent. Though not directly comparable, the information
we discover about n-grams is relevant to the underpin-
ning of these methods, since they are built upon byte
n-grams. Perdisci et al. [27] developed a multi-stage
system using both whole file byte n-grams and byte n-

grams from binary code extracted via dynamic analysis,
obtaining a final AUC of 0.977. Tahan et al. [37] looked
at 3-grams to select and match “segments” which were
used as their final features. Another related area that
we do not compare directly against is the task of dis-
tinguishing between subfamilies of malware using byte
n-grams, as is done by Zhang et al. [42] and Stolfo et al.
[36].

3 Data

We take care to be explicit with how and where we
obtained our data, as the data used had the most signif-
icant impact on performance. Our data is divided into
two higher level groups, A and B, that are collected
in different manners and from different sources. Every
file in both datasets is a valid PE binary for either x86
or x64 Windows. We do not intermingle these data for
training and keep them separate when testing so that
we can better evaluate the generalization of our models.
We do this because evaluating on held-out data that
was collected in the same manner as training data may
not adequately evaluate generalization, since both sets
are biased by the same collection mechanism. Having
separate sets collected in different ways helps avoid this
issue. Since not all of our training and test sets have
the same ratio of benign to malicious files, we always
report a weighted accuracy such that the two classes
have equal total weight in the score. Across all training
and testing sets, no two samples in our data have the
same MD5 checksum.

Group A’s malware is taken from Virus Share [31],
and we also use data from Open Malware [29] as a
separate malware only test set. Group A’s benign files
(or “goodware”) mostly come from various Microsoft
Windows operating systems, including Windows XP,
Window 7, andWindows 10. A smaller collection of good-
ware files were also downloaded from portablefreeware.
com and from the Cygwin and MinGW installations. We
use a held out test set from Windows 8.

We arbitrarily chose Windows 8 for the test set. We
wanted to avoid having files from the same version of
Windows in both the training and testing set to minimize
any potential information leakage across the sets. We
used as many files from Virus Share in the training set
as we could given our computational resources, and used
the remainder that we had downloaded for testing. The
split of Virus Share in training and testing was random,
since we had no additional information to improve the
way data was split. During evaluation, Open Malware
is reported as a separate line and is not included in the
Group A numbers. Again, this is so we can better judge
generalization since no data from Open Malware was in

portablefreeware.com
portablefreeware.com

4 Edward Raff et al.

the training set. The Open Malware data is collected in
a manner similar to the Virus Share data, so we would
expect their data to be more similar to each-other than
our other data.

The use of a public malware corpus combined with
Windows files and a selection of other commonly in-
stalled applications is the same strategy used to build
the training and testing sets in most previous work [e.g.,
13, 17, 25, 27, 33]. Our results for models trained on the
Group A data should be representative of the results
other works would have obtained.

During initial testing, models trained on Group A
were not performing well on new data, despite encourag-
ing cross validation scores. We sought out an industry
partner to share data of a higher quality and more rep-
resentative of the larger population, and is the source of
our Group B data. Santos et al. [32] also used a private
corpus from an industry partner, sampling 1,000 benign
and malicious files. We received data from our partner
in two batches. The testing set represents the first batch
of data obtained, while the second and larger batch was
used as the training set.

Both groups of data were randomly sampled from
a larger set of benign and malicious EXEs that are
meant to be representative of what is often seen on
desktop computers (excluding Microsoft EXEs). The
total number of files for all our data, Groups A and B,
can be found in Table 1.

Table 1 Breakdown of the number of malicious and be-
nign training and testing examples in each data group, along
with the sources they were collected from. “Misc.” comprises
portablefreeware.com, Cygwin and MinGW.

training testing

Group A malicious benign malicious benign

Virus Share 175,875 — 43,967 —
Open Malware — — 81,733 —
MS Windows — 268,236 — 21,854
Misc. — 1,195 — —
total 175,875 269,431 125,700 21,854

Group B

Industry Partner 200,000 200,000 40,000 37,349
total 200,000 200,000 40,000 37,349

4 Feature Selection and Model Building

An issue not adequately addressed in previous work is
the feature selection process. For the 400k total files in
Group B’s training set, there are 4,289,759,510 unique
4-grams and 35,953,973,975 unique 6-grams observed.

Storing the 6-grams naively, with 32 or 64-bit integers for
count information, would take 503 or 791 GB of RAM,
respectively. This issue alone is a significant road-block
to applying byte n-gram features in practice.

100 101 102 103 104 105 106
100

102

105

108

1011

Number of files containing each 6-gram

N
um

be
r
of

un
iq
ue

6-
gr
am

s

Fig. 1 From training-set of Group B, the number of 6-grams
that occurred in x many files.

The feature selection process is made somewhat eas-
ier by the frequency of individual n-grams, as shown in
Figure 1. We observe that they tend to follow a power-
law type distribution, with 87.72% of 6-grams occurring
only once, 97.58% 6-grams occurring ten or fewer times,
and 99.61% with 100 or fewer occurrences. This is not
surprising, since n-grams from NLP applications tend
to follow a power-law (Zipfian) distribution as well. We
felt the presence of such a distribution was worth con-
firming, since there is no reason n-grams would have
to follow such a distribution when applied to different
domains. We can reduce our set of candidate n-grams in
general by selecting a minimum number of occurrences
based on coverage in our dataset. For example, selecting
6-grams that occur in at least 1% of the aforementioned
400k files results in just under 1.6 million 6-grams (a
reduction of more than 99.99%).

Learning from 1.6 million 6-grams is still a compu-
tational burden and provides strong potential for over-
fitting, so additional feature selection is necessary. Most
previous work [e.g., 15, 27] use Information Gain criteria
(1) or some other simple ranking scheme to select a fixed
subset of n-grams. Our approach is to first do a coarse
feature selection down to 200k n-grams, followed by a
final feature selection during model construction.

We compared a number of ranking schemes to choose
a subset of 200k n-grams which we list and briefly de-
scribe. For the equations below, gj indicates the presence
of n-gram j, and mj and bj are the number of malware
and benign files that had gj present. M denotes the mal-

portablefreeware.com

An Investigation of Byte N-Gram Features for Malware Classification 5

ware class, B denotes the goodware or “benign” class,
and P(x) is the probability of x given the training data.
NM and NB indicate the number of n-grams found in
malicious and benign files respectively. We tested each
of the below methods, such as Information Gain (1), to
select the initial 200k subset of n-grams.

IG(gj) =
∑

v∈{gj ,¬gj}

∑
C∈{M,B}

P(v, C)·log2
(

P(v, C)
P(v) · P(C)

)
(1)

As an alternative to Information Gain, we introduced
two simple scores that prefer features occurring in only
one of the classes. Malice Score (2), which is biased
toward features more common in malware and Benign
Score (3) to favor features found in goodware.

Malice Score(gj) = P(gj |M)− P(gj |B) (2)

Benign Score(gj) = P(gj |B)− P(gj |M) (3)

To test favoring lop-sided occurrence rate in either
direction we added the Absolute Malice Score (4). A
simple variant on the Absolute Malice Score is Root
Malice Score (5), which prefers more “pure” features
based on the class in which it occurred.

Absolute Malice Score(gj) = |P(gj |M)− P(gj |B) | (4)

Root Malice Score(gj) =
∣∣∣∣√P(gj |B)−

√
P(gj |M)

∣∣∣∣ (5)

We also evaluated ranking based on the Gini coeffi-
cient (6) and KL-divergence (7). Our Gini tests add c
artificial observations to each n-gram, because without
this modification many millions of n-grams all received
the same maximal score.

Ginic(gj) =
2(mj + c)(bj + c)

(mj + bj + 2c)2
(6)

KL(gj) =
mj

mj + bj
· log2

mj(NM +NB)

NM (mj + bj)

+
bj

mj + bj
· log2

bj(NM +NB)

NM (mj + bj)

(7)

Much previous work used feature ranking schemes
like these to do all of their feature selection. A shortcom-
ing of this approach is the need to then estimate how

many features to select. Prior works usually selected
only a few hundred to one thousand n-grams, and then
trained a model on the selected subset. Determining
the appropriate value of k becomes its own expensive
process, as noted in Kolter and Maloof [17] where the
number of n-grams was chosen based on analysis of a
subset of the data. In our approach (detailed in 4.1),
the initial coarse feature selection is mostly for compu-
tational convenience. This is because we have chosen
a Machine Learning model that does implicit feature
selection as part of the model building process.

To compare these feature selection methods, we built
models using each of them according to the method
described in subsection 4.1 and sorted the models by
their cross validated (CV) accuracy. The results are
shown in Table 2. We see that simply selecting the n-
grams that occurred in the most files performed best,
with most methods resulting in only a minor difference.
Specifically, all of the tested feature selection methods,
except the Gini measure (6) and KL-divergence (7),
obtained 90%+ accuracy. We note that of the simple
sorting methods we tested — equations 2 through 5 —
the Root Malice Score did slightly worse than the others.
The square root term in (5) causes a slight preference
for purity of label, that is to say the equation prefers to
select n-grams that occur only in benign or malicious
files but not both. This is a property shared by (6)
and (7). Overall this would seem to indicate a need
for common, high-frequency n-grams in order for our
models to perform well.

Much of the previous work [17, 25] in using n-grams
has suggested the use of Information Gain (1) based
on its success in text classification and other NLP do-
mains. Our results indicate that while Information Gain
does work well, we can use much simpler approaches by
choosing a model that has feature selection built-in to
the model’s training.

Table 2 10-fold CV accuracy rate on group B training data
using the top 200k features selected by different methods. Test
set errors had similar ranking.

Selection Method CV Accuracy

Frequency 96.6%
Malice Score 96.3%
Abs Malice Score 96.3%
Benign Score 96.3%
Info Gain 95.2%
Root Malice Score 94.6%
Gini32 85.0%
KL 78.7%
Gini256 77.2%

6 Edward Raff et al.

A downside not addressed in previous works is that
adding more data does not significantly change the
number of n-grams that become viable model features,
causing diminishing returns as data is added. This is
counter to the argument presented in Schultz et al. [33].
For example, for the results of our whole model building
process: a model built from the training set of Group B
obtains a weighted accuracy of 87% on all data, exclud-
ing Open Malware, from Group A. Training from the
much smaller test-set of Group B gets an accuracy of
84.4% on the same data. Evaluating the recall on only
the Open Malware data, the performance only drops
from 81% to 80%. This puts n-grams in a poor place,
as doubling the amount of data can double the amount
of resources required but produce only marginal im-
provement in outcome. This makes it difficult to exploit
the phenomena that adding more data tends to provide
significant improvements to accuracy [3, 6, 12], which
is what we would normally expect. The minor increase
in accuracy could be an indication that our features do
work well or are nearing the representational capacity
of our features and model. We don’t believe this is the
cause, as we observe evidence of overfitting in the re-
mainder of this section, as exemplified in Table 3 and
discussed through the rest of this paper.

4.1 Elastic-Net Models of N-Grams

We build our models with Logistic Regression using
either of two different regularization methods: Lasso
(also called L1) [38] and Elastic-Net [43]. The objective
function of both can be defined using equation 8: for
Lasso, α = 1 and for Elastic-Net, α = 0.5. The value C in
the loss function is our regularization parameter. Larger
values of C decreases the strength of the regularization.
As C → ∞, (8) approaches the behavior of standard
Logistic Regression. Smaller values of C reduce the
flexibility and effective degrees of freedom of the model,
encouraging the solution vector w to approach zero.

f(w) = α||w||1 + (1− α)||w||2+

C

N∑
i=1

log(1 + exp(−y · wTxi))
(8)

We use these methods for two reasons. First, they pro-
vide a principled method of feature selection that is
robust to extremely high dimensional data with many
irrelevant features [26] while also being computationally
tractable. Their feature selection property is a direct
result of the model building process, as exact zeros
will occur in the optimal solution of w as a result of
the α||w||1 term in the objective function. Second, we
can compute a regularization path, where we look at

the properties of the model (e.g. accuracy, number of
non-zero weights, or coefficient values) as a function
of C. This regularization path provides insights into
the model’s performance and the quality of the selected
features.

For our training process, we start with the 200,000
6-grams based on total number of files they occurred in
(i.e., an n-gram is counted only once per file). Feature
vectors are constructed as binary vectors, with zero
indicating the absence of the feature in the file, and one
indicating its presence.

We also experimented with using a larger number
of features to start (up to one million), with using TF-
IDF style weightings for occurrences, and with counting
n-grams by total number of occurrences in a file when
considering the top selection. None of these experiments
resulted in a noticeable change in accuracy, or the be-
havior of the regularization path when trained. Any one
of these changes could result in a different subset of
n-grams being selected by our final model, with up to
50% of them changing. We are concerned that up to half
of the selected features could change with no discernible
impact on accuracy and believe this is an indication of
the weakness of byte n-gram features.

To create our regularization path, we need a mini-
mum and maximum value for C to consider. We first
compute C0, the value of C that would result in a weight
vector of all zeros as specified in Yuan et al. [40]. We
then use a starting value of 2C0 as the strongest regular-
ization we evaluate, and set the weakest regularization
to be 2C0 × 105. We compute the regularization path
along 300 logarithmically spaced points along this range,
following the basic warm-start strategy in Friedman et al.
[9]. The warm-starting strategy allows us to build these
models sequentially at only incremental cost. However,
our search is over 5 orders of magnitude, where Fried-
man’s search only covered 2 orders of magnitude. We use
this larger range due to unusual behavior observed in
the regularization path, and highlight the issues below.
We confirmed our results using two implementations of
Elastic-Net Logistic Regression, one an extension of the
new GLMNET [41] to the Elastic-Net case and another
using the extension to OWL-QN presented in Gong and
Ye [10].

In Figures 2 and 3, we show the number of non-
zero values in the weight vector and the accuracy over
the regularization path using 6-gram features. These
results give us several reasons to suspect that our n-gram
features are over-fitting the data.

Our data requires extreme levels of regularization
to obtain an informative regularization path, which is
the main reason we use such a large search range for
C. In Yuan et al. [41] the smallest regularization value

An Investigation of Byte N-Gram Features for Malware Classification 7

10−5 10−4 10−3 10−2 10−1 100

101

102

103

104

C

N
um

be
r

of
N

on
-Z

er
o

W
ei

gh
ts

in
So

lu
ti

on

L1 A
Elastic A
L1 B

Elastic B

Fig. 2 Average number of non-zero weights in solution vector
based on 3-fold cross validation across regularization path.

10−5 10−4 10−3 10−2 10−1 100

0.6

0.7

0.8

0.9

1

C

A
cc

ur
ac

y

L1 A
Elastic A
L1 B

Elastic B

Fig. 3 Average accuracy based on 3-fold cross validation
across regularization path.

considered is 2−4, which is already near the maximum
of our evaluated range and at the point of diminishing
returns. If we had used the ranges suggested in other
papers our regression model would have exhibited almost
no change in the weight vector for all tested values.1

Even if we ignore the abnormally high amount of
regularization, the behavior of the regularization paths
of both Group A and Group B models are irregular.
Looking at Figure 2, the most pronounced issue is the
step-ladder addition of features in large groups at a
time, rather than more continuous additions of features
a few at a time. This behavior is obvious in the Group
A models, but also occurs in the Group B models. In
Figure 3, the Group A models exhibit higher accuracies
over the whole range of regularization, much higher than

1 In extended testing, neither the accuracy or number of
non-zeros increased when testing larger values of C.

we would expect. The differences between the models’
CV error rate gives a strong indicator of data quality
issues.

In addition, we note that the L1 Group B model in
Figure 3 has a CV accuracy of 71% using an average
of only four features. The L1 Group A model gets 91%
using just ten. The Elastic-Net Groups B & A models
use a similarly small 40 features to obtain 72% and
94% accuracy respectively. A priori, it seems highly
unreasonable that as few as ten 6-grams should be able
to obtain such high accuracies. Both Group B models are
entering a plateau of 95% accuracy by 10,000 features,
and both Group A models plateau of 99%+ by just 2,000
features. If n-grams were effectively learning features
from the binary sections of an executable, it seems
unlikely that millions of malware and goodware EXE
files would be forced to use such a small subset of binary
code. We confirm in section 5 that the n-grams are not
effectively learning binary features.

Table 3 Performance of Kolter and Maloof (KM), L1 and
Elastic-Net regularized models trained on both groups of data,
and applied to all testing data. Open Malware (OM) is recall,
others are weighted accuracy. Column indicates which data
was used for training the model used. Row indicates the test
set and whether 4 or 6-gram features were used.

Group A Group B
L1 Elastic KM L1 Elastic KM

6-
gr
am

OM 96.9% 97.2% 96.2% 81.1% 81.2% 49.5%
A Test 99.7% 99.6% 99.1% 87.3% 87.0% 72.8%
B Test 68.1% 68.1% 62.0% 94.5% 92.5% 85.5%

4-
gr
am

OM 97.0% 97.3% 97.3% 67.1% 64.1% 52.6%
A Test 99.6% 99.6% 99.3% 84.9% 84.7% 74.3%
B Test 70.5% 68.8% 65.8% 90.6% 89.7% 86.6%

The final testing accuracy is shown in Table 3. We
use a weighted accuracy so that the malware and benign
samples in the test set have equal total weight. Since the
Open Malware test set comprises only malicious files,
we list the recall rate rather than accuracy. The Open
Malware files are not included in the A Test scores.

In our results the models trained on Group A do not
generalize to the data in Group B, getting an accuracy
much lower than what was achieved in all previous works.
Due to the bias in how Group A’s data was collected,
we believe that the Group A model has actually learned
an “is it a windows executable?” classifier, rather than
“is it malware?”. This would explain the high recall
on Open Malware. The model learns to say “no, not
Windows” (i.e. malware) for all the data, since none of it
came from Windows and the whole collection is malware.
However, saying “no” for the Group B goodware (which
also did not come from Windows) results in an error
rate approaching random guessing. The lopsided errors

8 Edward Raff et al.

in the Group B test set corroborate that the models
defaults to classifying most inputs as malware by default,
and then use features present to switch to a decision
of goodware. This is further confirmed by looking at
the false-positives on the portablefreeware, Cygwin, and
MinGW files. Since these were a part of the training
set, we would expect them to be predicted correctly by
the model. However we found that MinGW and Cygwin
had a false positive rate of 39%, and portablefreeware
data had a false-positive rate of 43%. These values are
extraordinarily high and do not reflect the Group A test
set accuracies, providing strong evidence that the model
is not accurately learning the desired concept.

Models trained on Group B generalize better to
Group A testing than vice versa, though the accuracy on
the A test set is lower than the Group B test set, and the
recall on Open Malware is down to the low 80s. Despite
the drop, this overall behavior is consistently better —
as it is generalizing past the training distribution. This
indicates the 6-gram model trained on this data has
meaningfully captured some information. The spread
in test set performance, combined with the behavior
exhibited in Figures 2 and 3 give us caution that there
may still be some level of over-fitting occurring. This is
corroborated by the higher CV accuracies in Table 2, and
suggests that the I.I.D. assumption of cross validation
is too strongly violated in our corpora to be used for
evaluation. Given the similarity of our Group A data to
others, and its increased scale, this brings many previous
results into question — especially when used as the only
validation as in Abou-Assaleh et al. [1]. We also note
that the Group B test performance drops to around
81% accuracy when considering the generalization to
the Open Malware data. While this does not necessarily
represent the accuracy we would expect when deploying
this model to various users, it is considerably below
the mid to high 90s that are reported by most others.
This indicates that the true effectiveness of binary n-
grams for malware classification has been considerably
over-estimated.

Comparing to the baseline approached used in Kolter
and Maloof [17] (KM), our use of Elastic-Net and Lasso
regularized Logistic Regression has provided a dramatic
performance improvement when trained on the Group
B data. Because KM use boosted decision trees, which
can learn non-linear decision surfaces, we know the dif-
ference in accuracy is not a capacity issue of the chosen
model since we used a simpler linear model. The KM
approach trained and tested on Group B performs worse,
likely due to a lack of features. By using a model with
the feature selection process built in, our performance
has improved generalization and simplified the feature
selection task. We also note that the KM’s approach

loses generalization accuracy at a quicker rate when
moving from the B test data to A test, and from A
test to Open Malware. Considering the extreme levels
of regularization we are using for a linear model, it is
likely that the KM approach’s difficulty in generalizing
past the training data is caused by the use of a more
powerful and flexible discriminative model. That is to
say, the non-linear model used in KM has greater ca-
pacity to overfit the data — which we believe to be the
issue since our simpler model is also showing evidence
of overfitting.

4-gram vs 6-gram Performance

On the issue of n-gram size, we note that there is no
significant difference in the overall behavior of the reg-
ularization path between 4 and 6-grams, though there
is an apparent difference in generalization accuracy. In
Figure 4 (corresponding to Figure 2) we see the same
general pattern of the Group B models initially selecting
more features than the Group A models, before reaching
a common plateau. In Figure 5 (corresponding to Fig-
ure 3) we again see that the models trained on Group A
immediately reach a higher accuracy, with the Group B
models not reaching as high and taking longer to reach
their plateau. We note that the cross validation scores
on the Group B data are reaching higher accuracies
for 4-grams (97.4%) than was obtained for the 6-grams
(95.6%). Yet 4-grams have lower test set accuracies than
6-grams in Table 3. This means the 4-grams are ex-
hibiting even higher degrees of overfitting compared to
6-grams.

10−5 10−4 10−3 10−2 10−1 100

100

101

102

103

104

105

C

N
um

be
r

of
N

on
-Z

er
o

W
ei

gh
ts

in
So

lu
ti

on

L1 A
Elastic A
L1 B

Elastic B

Fig. 4 Average number of non-zero weights in solution vector
based on 4-gram features and 3-fold cross validation across
regularization path.

An Investigation of Byte N-Gram Features for Malware Classification 9

10−5 10−4 10−3 10−2 10−1 100

0.5

0.6

0.7

0.8

0.9

1

C

A
cc

ur
ac

y

L1 A
Elastic A
L1 B

Elastic B

Fig. 5 Average accuracy based on 4-gram features and 3-fold
cross validation across regularization path.

Looking at the numbers in Table 3, we see that
despite having the same general behavior — 6-grams
trained on Group B generalized considerably better
than 4-grams to the Open Malware data, with 4-grams
trailing by 14 percentage points. The difference is not
as large for the A and B test sets, but the 6-grams do
continue to perform better by 2 to 4 points. This would
seem to validate our general preference for 6-grams
over 4-grams. Looking only at the models trained on
Group A, the difference in accuracy mostly disappears.
Considering that the Group A models are overfitting
to the Microsoft Windows data, it is understandable
that their performances would converge. This would
also explain why most prior works, using data similar
to Group A, have shown little performance difference
for n-grams when testing various values of n.

5 N-Gram Evaluation

Given the poor level of performance compared to previ-
ous results when given more data, we sought to evaluate
what the n-grams extracted were actually learning. The
starting point of this was to use the 6-grams selected
by the Elastic-Net model trained on Group B to ob-
tain some simple statistics. We use the 6-gram model
since 6-grams had better performance than 4-grams in
subsection 4.1.

First, we look at the entropy of where our 6-grams
occurred. Because different modalities of information
have different average entropies [20], looking at these
statistics gives us an idea of what information may be
captured by the n-grams. Since 4 and 6-grams are too
small to compute a meaningfully entropy measure, we
estimate the entropy of an n-gram from a window of
bytes around where it occurred in a file. We compute

the Shannon entropy (9), where pi is the proportion of
byte i in the given window.

S = −
256∑
i=1

pi · log (pi) (9)

In our testing we used a window of 128 bytes, though
results were not sensitive to exact window size. The
distribution of n-gram entropies are presented in Table 4.
26% of our n-grams occurred in entropy regions more
often associated with plain-text (i.e. S ≤ 4) [20]. From
this table, it would appear that up to 74% of our n-
grams are occurring in entropy regions associated with
executable code (that may be packed or encrypted). This
is initially encouraging, as it indicates our 6-grams do
occur in regions associated with code and hence, may be
learning to discriminate between benign and malicious
code.

We also looked at how well distributed our features
are among the test data. In Figure 6 we plot the frac-
tion of 6-grams the model selected that occurred in the
Group B testing data. If our 6-gram features are work-
ing effectively, we would like to see a relatively even
distribution of feature occurrences, but the unfortunate
trend is that our 6-grams are not evenly distributed
through the test data. Instead a few files have a sig-
nificant fraction of features present, quickly trailing off
toward almost none of the features being present. For
n-grams to generalize well, we need to see our features
occur in new files on a consistent and regular basis, as
they are intrinsically critical to making the classifica-
tion decision. The likelihood of observing our n-grams
can only decrease when tested on data from a different
source, making this trend a significant issue.

Table 4 Percentage of n-grams that occurred within an en-
tropy window (rounded to nearest integer).

Entropy Proportion Cumulative

0 0.4% 0.4%
1 1.5% 1.9%
2 3.8% 5.7%
3 11.1% 16.8%
4 9.2% 26.0%
5 19.2% 45.2%
6 48.3% 93.5%
7 5.7% 99.2%
8 0.8% 100%

These statistics give us some higher level informa-
tion, but do not explain any of our results. Since so few
features are needed to obtain high CV accuracies, and
based on the proportion of our n-grams occurring in low
entropy regions, we examined the ASCII decoding of the

10 Edward Raff et al.

0 2 4 6 8

·104

0

0.2

0.4

0.6

0.8

File sorted by n-grams present

Fr
ac

ti
on

of
n-

gr
am

s
pr

es
en

t

Elastic B

Fig. 6 Fraction of 6-grams used in the model that are ob-
served in each testing point.

n-grams selected at the beginning of the regularization
path. A subset of the 4 and 6-grams selected by the
L1 regularized models are presented in Table 5. Six-
teen 6-grams and 4-grams were selected by the models
trained on Group A; thirteen 6-grams and 27 4-grams
were selected for the models trained on Group B. Note,
the number of non-zero features selected is larger than
what is shown in Figure 2 because those numbers are
the average number of non-zeros from the CV models,
whereas this is the actual model trained on all data at
that regularization strength.

Looking at the ASCII decodings, we can see that
the models trained on Group A are selecting parts of
the text “Microsoft Corporation”, which is embedded in
most of the executables that come with any installation
of Microsoft Windows, often if not always with symbols
such as “ R©” and “ c©”. Because L1 regularization does
not like selecting highly correlated features [43], it has
difficulty obtaining the n-grams to complete the string.

The model trained on Group B 6-grams appears
to be picking up items from the header and import
tables, selecting most of the import “KERNEL32.DLL”
and a GetProcess function. By looking at the Elastic-
Net 6-grams, since it has no issue selecting correlated
features, we can confirm that our hypothesis is correct
and that this behavior extends out into the beginning
of the regularization path’s search (such tables can be
found in the appendix). The model trained on Group
B 4-grams is still picking up string information, but
seems to prefer some different information. It does not
tend to select strings that make function imports, like
the 6-grams do. We suspect this is an issue with the
smaller 4-grams matching too many other tokens as well,
losing some of their discriminative ability. The items
selected by the 4-grams are generally selected by the

6-gram model later in the regularization path. Overall,
the most discriminative items being selected appear to
be string features. This result appears to contradict
Schultz et al. [33], which posited that n-gram features
provide additional robustness to the model since they
are harder to avoid than string-based features.

Table 5 Selection of 4 and 6-grams chosen by the most
strongly regularized L1 models. Whitespace denoted using the
‘␣’ symbol

Group A Group B
6-gram ASCII 6-gram ASCII

20004D006900 ␣Mi 000047657450 GetP
00720070006F rpo 657450726F63 etProc
006F00720070 orp 00004C6F6164 Load
43006F007200 Cor 6B65726E656C kernel
000100560061 Va 00004B45524E KERN
004400000001 D 4C33322E444C L32.DL

4-gram ASCII 4-gram ASCII

4D006900 Mi 69726541 ireA
7400AE00 t R© 6C3D2272 l="r
00720070 rp 3C736563 <sec
20004300 ␣C 2E637274 .crt
00010056 V 696F6E3E ion>
72794100 ryA 3C2F7365 </se

5.1 Multi-Byte Identifiers

Based on the behavior of the n-grams observed in Table 5
we develop the hypothesis that informative malicious
or benign segments in the data are longer than our
n-grams. If this is the case, we should see sequences
of adjacent or overlapping n-grams when processing
our files, and it would explain why increasing n to even
higher values does not tend to cause any significant drop
in performance. We call any such sequence a Multi-Byte
Identifier, or MBI. We search for MBIs using the subset
of n-grams chosen by our Elastic-Net model, since any
larger sequences of n-grams will be highly correlated
and thus less likely to be selected by Lasso.

It is difficult to manually evaluate how n-grams are
being used as more are added to the model. MBIs can
help us to better understand what higher level concepts
are being learned by our model. After manually inspect-
ing MBIs from a few files, we used a simple heuristic
to separate MBIs into three categories: Strings, Simple,
and Other. Examining the contents and statistics of
these categories helps us better understand what types
of information are being captured by our n-gram models.

1. Strings: Any MBI where more than half of the bytes
are ASCII printable characters.

An Investigation of Byte N-Gram Features for Malware Classification 11

2. Simple: Any MBI whose hex representation has two
or less distinct ASCII characters.

3. Other: Any MBI not in the other two categories.

Using this simple strategy, we find that 16.8% of
all extracted MBIs are strings, 43.0% are simple, and
40.2% belong to “other”. If restricted to unique MBIs, we
get 20.6%, 26.8%, and 52.7% respectively. The changes
in percentage of MBIs come mostly from the simple
section, which has the most repetition. Of the string
MBIs, most are learning to find items like “GetProcAd-
dress” and “WIN32.DLL” that are detecting imports
or section names such as “.text” and “.rsrc”.2 Some
strings appeared in data or code sections, an example
being “PADDINGXX” repeated 26 times. Most simple
MBIs were interleaved sequences of 0x00 and 0xFF of
varying lengths, sometimes over 1 KB in size. We were
not able to ascertain the nature of the other MBIs. An
attempt was made to disassemble these MBIs, but they
did not always produce meaningful assembly. While we
were able to occasionally find useful MBIs in this cate-
gory,3 we were not able to determine how meaningful
this larger category was as a whole.

These results indicate that n-grams may not be learn-
ing strong features. The percentage of MBIs that are
very simple is especially concerning given how frequently
they appear in both benign and malicious files. We be-
lieve many such MBIs, like 0xFF00FFFF000000, are an
artifact of the overfitting we have observed. In general-
izing to new data, they would then act as noise in the
decision process. We note that there is the possibility
for meaningful MBIs in the simple category, such as
0x0C0C0C0C [5] or the sequence 0xCCCCCCCC for
repeated int3 calls to interfere with a debugger. Unfor-
tunately we did not tend to see these in the MBIs our
models learned, though they do exist in our data set.

Objectively, any MBIs found in the code section of a
file will be brittle, especially if they call any function, as
the addresses called can easily change based on changes
in the header. In this case, our n-grams would act more
as a signature for previously seen malware rather than a
feature to predict novel malware. The accuracy on Group
B’s test set could be partially explained by the model
learning a set of smaller signatures, which are applicable
to test data from the same collection. While this could
be useful for systems such as the one in Griffin et al. [11],
signatures are intrinsically not generalizable features.
Given the number of string MBIs and the n-grams chosen

2 Amusingly, we discovered one instance of malware using
the non-standard “.virus” section name

3 An interesting example is the MBI 0x33C9B104014C24,
which we discovered is used by ClamAV as a signa-
ture (see https://github.com/eqmcc/clamav_decode/blob/
master/db/daily.ndb#L363).

by our models in Table 5, we suspect that n-grams are
obtaining most of their generalizable information from
the PE header and plain-text strings present in the file,
similar to the features used in Shafiq et al. [35]. We
also note that while n = 6 bytes is large enough to
capture the instruction and operands for about 97.6%
of instructions[14], a valid x86 instruction can be up
to 15 bytes in length. The variable-length nature of
the instructions appears to be a general mismatch for
fixed-length n-grams.

We were able to obtain the same MBI results using
the n-grams from our L1 regularized models as well.
We hypothesize that this is an artifact of the lack of
informative features. The L1 model, as C increases, is
forced to select increasingly larger groups of correlated
features simultaneously. This would explain the unusual
regularization paths in Figure 2 and the plateau in
Figure 3 and that we are able to obtain MBIs with
Lasso. However more testing is needed to be conclusive.
Given these results, it may be interesting to explore
using MBIs as features themselves in future work.

5.2 String Features

To determine how much of the discriminative power
comes from n-grams picking up on string features, we
perform another test using the occurrence of strings as
features. We use the GNU strings command to extract
all ASCII strings ≥ 4 characters from our training sets.
We then create a regularization path using Lasso and
Elastic net in the same way we did for n-grams, and
plot the cross-validated accuracy as well as the test ac-
curacies on Groups A and B as a function of C. For
comparison, in each plot are two dashed lines represent-
ing the performance of the 6-gram features on the A
and B test sets.

Once trained, we note that both models used a com-
parable number of string features as compared to the n-
gram features. Both models trained on Group A strings
selected around 5,500 out of 200,000 strings and the
models trained on Group B selected around 24,000. In
Figure 7 we see the cross-validated and test set accu-
racies of training an L1 regularized model on group A
training data using string features. As C increases, we
see the test set accuracies reach the same values as the
n-gram results. However, in the same plot in Figure 8
we see the CV score go above previous results, while
the test set scores both fail to reach the same accuracies
achieved when trained with n-grams.

Based on these results, it seems reasonable to con-
clude that n-gramming does learn some non-string fea-
tures, but can degrade to learning only string features
when given poor data. This further calls into question

https://github.com/eqmcc/clamav_decode/blob/master/db/daily.ndb#L363
https://github.com/eqmcc/clamav_decode/blob/master/db/daily.ndb#L363

12 Edward Raff et al.

10−5 10−4 10−3 10−2 10−1 100

0.6

0.7

0.8

0.9

1

C

A
cc

ur
ac

y

CV A Test B Test
6-gram A Test 6-gram B Test

Fig. 7 3-fold CV and test set accuracy using string features.
Trained using L1 regularization from group A data

10−5 10−4 10−3 10−2 10−1 100

0.5

0.6

0.7

0.8

0.9

1

C

A
cc

ur
ac

y

CV A Test B Test
6-gram A Test 6-gram B Test

Fig. 8 3-fold CV and test set accuracy using string features.
Trained using L1 regularization from group B data

all previous results collected in the same manner as our
Group A data. The gap in performance between n-grams
and strings features trained from Group B does open
the possibility that n-grams are learning some useful
features that are not strings.

Another potential explanation of the performance
gap is that exact extraction of strings fails to capture cer-
tain information that is captured by n-grams of strings.
Some sub-strings may be more generalizble then the
whole string they come from. Many of our strings are
also sub-strings of larger strings we extracted. A most-
common-substring may better capture their relationship
and match other instances appended with characters
that we had not seen, and therefore would not catch.
Normalizing by common sub-string could also move

items up in total count and therefore warrant consider-
ation in the model, when it would have been removed
for being too infrequent before. A similar issue we see
is strings that are mostly the same, but have an edit
distance of one or two. In some sense, n-grams learning
from strings better handle these problems by limiting
themselves to a fixed size, though we must rely on the
model building process to adequately select enough com-
ponents of these strings and properly weight them. We
have not yet tested this hypothesis as a detailed analysis
of string-based features is beyond the scope of this work.

6 Discussion

We have performed a significant investigation into the
performance of n-grams, and found them to be learning
less and performing worse than previous work would
have suggested. We hypothesize that n-grams, at least
used on the whole executable, have a number of intrinsic
issues that have not been adequately discussed.

First is the discovered issue that n-grams appear to
be learning mostly from string content in an executable,
and items from the PE header (which also contains
strings). We believe this is an issue intrinsic to n-grams.
While there are billions of potential n-grams, we need to
select the features that occur frequently enough to occur
in new data as well. Selecting with a predisposition to
frequency then encourages us to select lower entropy
features, which consist primarily of strings and padding.
However padding alone is not a particularly strong signal,
and as mentioned, strings could have been obtained in
a much simpler fashion.

As mentioned in subsection 5.1, a possible preference
for 6-grams may be that they are large enough to regu-
larly capture a whole x86 instruction, but still fall short
2.4% of the time. This makes processing with n-grams
problematic in creating a mismatch between our features
and the data. This is important since, assuming no in-
struction in isolation is an indicator of maliciousness, we
need to capture multiple instructions in a single feature.
To even attempt to consistently capture three sequential
assembly instructions we would need to produce and
process n-grams of at least 12 bytes in length for most
cases, and up to 45 for extreme cases. This alone is sim-
ply too computationally demanding a task to perform.
Even if we had the computational resources to do so,
there would still be a problem of trading off between
specificity and generalization. We want our features to
be large enough that they are not likely to occur by
chance in a new file, but small enough that they are
not specific to the training data as this would degener-
ate into a signature-based approach, which would have

An Investigation of Byte N-Gram Features for Malware Classification 13

maximum specificity but no generalization. When con-
sidering the aforementioned frequency bias, it becomes
even harder to imagine a large n-gram being selected by
the model.

Another intrinsic issue is the loss of location infor-
mation when using n-grams. Given our observed per-
formance and the common use of string features, we
believe that this limitation is likely playing a role in
their weakness. For example, in our Group A malware
we observed that at least 5% of the data had inconsistent
section names compared to the permissions set in the
PE header (e.g. a section named .data but marked as
executable in the header).4 The occurrence of a feature
in a non-executable section, when normally it would
be found in an executable section, could have a signifi-
cantly different meaning that would never be recognized
by n-gram approaches. This type of location mismatch
could occur both based on a section’s string name in
the header, and what the section’s true identity is based
on the permissions set.

Finally, we believe that the drop in generalization
performance from our Group B model can be explained
in part by an intrinsic brittleness to n-gram features.
Regardless of what our n-grams learn, to apply them
we must obtain an exact match when classifying a new
datum. This means any minor change will make the
feature “disappear” in terms of its impact on our model.
Consider that we see GetProcAddress as a common
MBI in Group B, indicating that this Windows function
is a common feature of malware. We would then like to
see our n-grams learn to identify the call or jmp instruc-
tions, followed by the address of the GetProcAddress
function as a feature. However, in the import table to
the PE the address of any function can be arbitrary de-
fined, thus making it impossible for any of our n-grams
containing a call or jmp plus an address to generalize
to new files.

The other part to the lack of generalization is an
intrinsic potential for over-fitting that will be found
with n-grams. Estimating model parameters when the
number of features is near or larger than the number of
samples is a classic scenario for over-fitting due to the
curse of dimensionality [2, 4, 39]. Since each file is one
sample and based on the power-law observation of the
n-gram distribution, we should reasonably expect that
every new executable will give us thousands to tens of
thousands of previously unobserved n-grams (depending
on the size of the file). Thus we are in a scenario that
will always produce many more features than samples.
We selected Lasso and Elastic-Net for their robustness in

4 We did not perform an exhaustive test for consistency;
this was merely a property found when testing some simple
hypotheses. The true number could be much higher.

this scenario and many of the features can be removed by
frequency counts, but these techniques are not entirely
immune to the curse of dimensionality.

6.1 On Using Multiple Training and Testing Sets

Because the issue of overfitting is critical to our results
we also discuss why we have used multiple, independent
datasets for our evaluation, which may seem unusual at
first. We do this because the space of possible malware
and goodware is extraordinarily large, and it is not pos-
sible for us draw a well-distributed random sample of
real files from this space. Executables from Microsoft
Windows are the most readily available source of benign
files. Since these all come from the same source, they all
share a strong common bias. Another collection strategy
is to include commonly installed applications, such as
third-party web browsers, as a source of goodware. This
obtains only a few thousand EXEs, which is not enough
to represent the larger population of different miscel-
laneous applications people may have. (If such limited
data were an adequate representation of the class of
goodware then it would be easy enough to construct a
white list of known safe applications.)

It is easier to obtain large amounts of Malware thanks
to resources such as Virus Share and Open Malware, and
from the use of honeypots. Yet these sources are also
biased. They are run by volunteers, and the samples are
provided by volunteers. So each source already has an
intrinsic bias in the malware that is provided by those
who make the effort to do so. There may be individuals
or organizations that see malware and are not able
or willing to share it, and thus that data won’t make
it into the collection. Private data collections used by
anti-virus corporations, such as our industry partner,
are also biased by their data collection mechanism and
contractual agreements with clients and customers.

Given all of these potential biases and the large space
of possible EXEs, we must be careful in our inference
of the true generalization of our results. Using multiple
evaluation sets that avoid sharing common biases helps
us to better determine generalization. For example, if
Group A was sufficient to learn the benign versus mal-
ware problem, we would expect a model’s cross validated
accuracy on Group A and test set accuracy on Group B
to be similar; however, it is not. Said another way, we
want to see models trained on one dataset generalize
to new datasets. If the model is able to generalize to a
completely new dataset, that gives us higher confidence
it will continue to perform well on new and novel mal-
ware. If it fails to do so, then we have little confidence
that the model will continue to perform well against
new and novel malware.

14 REFERENCES

If we instead merged all our data into one larger
dataset, and performed cross validation, the aforemen-
tioned biases will be in all folds, and we would obtain
little information about the true generalization of the
model. This is an issue with the assumption that data
is independently and identically distributed. While this
assumptions is rarely entirely true in practice, it is vi-
olated in too strong a manner for cross validation to
be valid for our data. If it were appropriate to merge
our Group A and B data and use cross validation, we
would expect to see similar performance across datasets
and similar features learned. We have shown in subsec-
tion 4.1 that the performance is not consistent across
datasets, and in section 5 that the features learned are
different depending on the training dataset.

7 Conclusion

Previous work has reported byte n-grams to be highly
effective for malware classification. The goal of our work
was to investigate this feature type and determine how
it performed so well on such a difficult task. By ap-
plying and evaluating Elastic-Net and L1 regularized
Logistic Regression and the novel Multi-Byte Identifier
to the n-gramming of a corpus of previously un-reported
size, we have shown significant issues with the use of
n-gram features. They are computationally expensive,
exhibit diminishing returns with more data, are prone
to over-fitting, and do not seem to carry information
much stronger than what is more readily available from
the PE header and ASCII strings. While n-grams do
have some merit as a feature for executable files, their
results have been significantly over-estimated in the lit-
erature. Overall, it seems that we could obtain the same
performance using much simpler and more interpretable
techniques. We have also observed a larger issue, to
wit, many papers are evaluating with a corpus of be-
nign files collected mostly from Windows installations,
which is too simple a subset to accurately represent the
goodware vs malware problem. Our work highlights the
importance of investigating what a model has actually
learned, rather than simply accepting held out or cross
validated scores as true performance.

The information present in n-grams are still not fully
explored, and may still be useful in a more restricted
context. For example, while using only n-grams is not
very effective, can n-gramming a limited portion of an
executable be informative in conjunction with other
features? It is also an open question as to whether n-
gramming with domain knowledge could improve results,
where n-grams extracted from the .text section of a
EXE file are processed and treated differently then n-
grams from other sections. Of course this may nullify

one of the prime advantages of n-gramming, to wit,
that it requires no domain knowledge to apply. Future
avenues of research include evaluating the viability of
n-grams in other domains, and exploring what other
approaches may work for EXE files but require limited
or no domain knowledge. Based on the information we
have extracted, we plan to do an investigation in the
use of n-grammed disassembled instructions combined
with the header information that were used by the n-
grams. The results based on our multiple data sources
also leads to a larger open question: how do we evaluate
the quality of an executable corpus?

References

[1] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Swei-
dan. N-gram-based detection of new malicious code. In
Proc. 28th annual int’l computer software & applica-
tions conference. Vol. 2. IEEE, 2004, pp. 41–42.

[2] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On
the Surprising Behavior of Distance Metrics in High
Dimensional Spaces. In Proc. 8th int’l conf. on database
theory. J. v. d. Bussche and V. Vianu, editors. Springer-
Verlag, 2001, pp. 420–434.

[3] M. Banko and E. Brill. Scaling to Very Very Large
Corpora for Natural Language Disambiguation. In Pro-
ceedings of the 39th annual meeting on association for
computational linguistics, 2001, pp. 26–33.

[4] R. Bellman. Dynamic Programming. Princeton Univer-
sity Press, Princeton, NJ, 1957.

[5] Corelan Team. Exploit writing tutorial, part 11: heap
spraying demystified. 2011. url: https://www.corelan.
be/index.php/2011/12/31/exploit-writing-tutorial-
part- 11- heap- spraying- demystified/ (visited on
05/25/2016).

[6] P. Domingos. A Few Useful Things to Know About
Machine Learning. Commun. acm, 55(10):78–87, Oct.
2012. issn: 0001-0782.

[7] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and
C. Glezer. Applying Machine Learning Techniques for
Detection of Malicious Code in Network Traffic. In
Proceedings of the 30th annual german conference on
advances in artificial intelligence. In KI ’07. Springer-
Verlag, Berlin, Heidelberg, 2007, pp. 44–50. isbn: 978-
3-540-74564-8.

[8] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. In Proceedings of the thirteenth
international conference on machine learning (ICML
1996). L. Saitta, editor. Morgan Kaufmann, 1996, pp. 148–
156.

[9] J. Friedman, T. Hastie, and R. Tibshirani. Regular-
ization paths for generalized linear models via coordi-
nate descent. Journal of statistical software, 33(1):1–22,
2010.

[10] P. Gong and J. Ye. A modified orthant-wise limited
memory quasi-Newton method with convergence anal-
ysis. In Proc. 32nd int’l conf. on machine learning.
Vol. 37, 2015, pp. 276–284.

[11] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Au-
tomatic generation of string signatures for malware
detection. In R. Lippmann and A. Clark, editors, Re-
cent advances in intrusion detection, pp. 101–120, 2009.

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

REFERENCES 15

[12] A. Halevy, P. Norvig, and F. Pereira. The unreasonable
effectiveness of data. Intelligent systems, ieee, 24(2):8–
12, 2009.

[13] O. Henchiri and N. Japkowicz. A Feature Selection
and Evaluation Scheme for Computer Virus Detection.
In Proc. of the 6th int’l. conf. on data mining. IEEE
Computer Society, 2006, pp. 891–895. isbn: 0-7695-
2701-9.

[14] A. H. Ibrahim, M. B. Abdelhalim, H. Hussein, and
A. Fahmy. Analysis of x86 instruction set usage for
Windows 7 applications. In 2nd int’l conf. on computer
technology & development, Nov. 2010, pp. 511–516.

[15] S. Jain and Y. K. Meena. Byte level n-gram analysis
for malware detection. In K. R. Venugopal and L. M.
Patnaik, editors, Computer networks and intelligent
computing, pp. 51–59. Springer, 2011.

[16] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess,
G. J. Tesauro, and S. R. White. Biologically Inspired
Defenses Against Computer Viruses. In Proceedings
of the 14th international joint conference on artificial
intelligence. Vol. 1. Morgan Kaufmann, 1995, pp. 985–
996. isbn: 1-55860-363-8.

[17] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. Journal of
machine learning research, 7:2721–2744, Dec. 2006.

[18] J. Z. Kolter and M. A. Maloof. Learning to detect
malicious executables in the wild. In Proc. of the 2004
ACM SIGKDD int’l conf. on knowledge discovery and
data mining. ACM Press, 2004, pp. 470–478.

[19] R. W. Lo, K. N. Levitt, and R. A. Olsson. Refereed
Paper: MCF: A Malicious Code Filter. Comput. secur.,
14(6):541–566, Jan. 1995. issn: 0167-4048.

[20] R. Lyda and J. Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEE security and
privacy magazine, 5(2):40–45, Mar. 2007.

[21] M. M. Masud, L. Khan, and B. Thuraisingham. A scal-
able multi-level feature extraction technique to detect
malicious executables. Information systems frontiers,
10(1):33–45, Mar. 2008.

[22] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J.
Gao, L. Khan, J. Han, and B. Thuraisingham. Cloud-
based malware detection for evolving data streams.
ACM transactions on management information sys-
tems, 2(3):1–27, Oct. 2011.

[23] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici. Im-
proving Malware Detection by Applying Multi-inducer
Ensemble. Comput. stat. data anal., 53(4):1483–1494,
Feb. 2009. issn: 0167-9473.

[24] Microsoft Portable Executable and Common Object
File Format Specification Version 8.3. Tech. rep. Mi-
crosoft, 2013, p. 98.

[25] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, N. Jap-
kowicz, and Y. Elovici. Unknown malcode detection and
the imbalance problem. Journal in computer virology,
5(4):295–308, Nov. 2009.

[26] A. Y. Ng. Feature selection, L1 vs. L2 regularization,
and rotational invariance. In Proc. 21st int’l conf. on
machine learning, 2004, pp. 78–86.

[27] R. Perdisci, A. Lanzi, and W. Lee. McBoost: boost-
ing scalability in malware collection and analysis using
statistical classification of executables. In Annual com-
puter security applications conference (ACSAC). IEEE,
Dec. 2008, pp. 301–310.

[28] J. R. Quinlan. C4.5: programs for machine learning.
Vol. 1(3) ofMorgan Kaufmann series in Machine Learn-
ing. Morgan Kaufmann, 1993. isbn: 1558602380.

[29] D. Quist. Open malware. url: http://openmalware.
org/ (visited on 05/25/2016).

[30] D. K. S. Reddy and A. K. Pujari. N-gram analysis for
computer virus detection. Journal in computer virology,
2(3):231–239, Nov. 2006.

[31] J.-M. Roberts. Virus share. url: https://virusshare.
com/ (visited on 05/25/2016).

[32] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas.
N-grams-based file signatures for malware detection. In
Proc. 11th int’l conf. on enterprise information systems,
2009, pp. 317–320.

[33] M. Schultz, E. Eskin, F. Zadok, and S. Stolfo. Data
mining methods for detection of new malicious executa-
bles. In Proc. IEEE symposium on security and privacy,
2001, pp. 38–49.

[34] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer.
Detection of malicious code by applying machine learn-
ing classifiers on static features: A state-of-the-art sur-
vey. Information security technical report, 14(1):16–29,
2009. issn: 1363-4127.

[35] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq.
PE-Miner: mining structural information to detect ma-
licious executables in realtime. In R. Lippmann and A.
Clark, editors, Recent advances in intrusion detection,
pp. 121–141, 2009.

[36] S. J. Stolfo, K. Wang, and W.-J. Li. Towards stealthy
malware detection. In.Malware detection. M. Christodor-
escu, S. Jha, D. Maughan, D. Song, and C. Wang,
editors. Springer, 2007, pp. 231–249. isbn: 978-0-387-
44599-1.

[37] G. Tahan, L. Rokach, and Y. Shahar. Mal-ID: automatic
malware detection using common segment analysis and
meta-features. Journal of machine learning research,
13:949–979, Apr. 2012. issn: 1532-4435.

[38] R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the royal statistical society B,
58(1):267–288, 1994.

[39] M. Verleysen and D. François. The Curse of Dimen-
sionality in Data Mining and Time Series Prediction.
In Proc. 8th int’l conf. on artificial neural networks:
computational intelligence and bioinspired systems. J.
Cabestany, A. Prieto, and F. Sandoval, editors, 2005,
pp. 758–770.

[40] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin.
A comparison of optimization methods and software for
large-scale L1-regularized linear classification. Journal
of machine learning research, 11:3183–3234, 2010.

[41] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved
GLMNET for L1-regularized logistic regression. Jour-
nal of machine learning research, 13:1999–2030, 2012.

[42] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang. Ma-
licious codes detection based on ensemble learning. In
Proceedings of the 4th international conference on au-
tonomic and trusted computing. Springer-Verlag, 2007,
pp. 468–477. isbn: 3-540-73546-1.

[43] H. Zou and T. Hastie. Regularization and variable selec-
tion via the elastic net. Journal of the royal statistical
society B, 67(2):301–320, Apr. 2005.

http://openmalware.org/
http://openmalware.org/
https://virusshare.com/
https://virusshare.com/

16 REFERENCES

Table 6 Percentage of Group B data, and Group A Malware, marked as malware by ClamAV. Cases where ClamAV and the
label disagreed were uploaded to Virus Total to help confirm the label quality.

Group B Train Group B Test Group A Train Group A Test

Label Goodware Malware Goodware Malware Malware Malawre

ClamAV says Malware 0.4% 81.2% 1.4% 78.3% 66.6% 66.5%

Virus Total 0 AVs say Malware 82% — 12% — — —
Virus Total [1,5] AVs say Malware 12% — 22% — — 6%
Virus Total [6,15] AVs say Malware 6% — 36% 12% 2% —
Virus Total [16,25] AVs say Malware — 96% 24% 10% 2% —
Virus Total 26+ AVs say Malware — 4% 6% 78% 96% 94%

Appendix A Group B Data Labels

Since the Group B data is not publicly available, we
attempt to provide extra details about the contents for
readers who are interested. The results of the n-gram
analysis convince us that the resulting model has more
utility than one constructed from Group A style data, as
many prior works have done. One may wonder then how
much of the generalization gap incurred by the Group
B model is due to differences in the data distribution,
rather than the weaknesses of byte n-grams, or potential
label errors. Fully answering such a question is beyond
the scope of this work, however we hope the additional
details may be of use to the reader to better understand
the results as a whole and dissuade any concern of label
quality.

To obtain a rough estimate of label errors we ran
all Group B data (goodware and malware) through
ClamAV.5 We chose ClamAV because it is freely avail-
able to everyone and usable on all operating systems.
If the labels are correct, we expect to see that most
goodware is not flagged by ClamAV and that most mal-
ware is. Because ClamAV is not the most advanced of
anti-virus (AV) products, we upload a random sample
of 50 files in which ClamAV’s output disagreed with our
labels to Virus Total6 for further confirmation. Virus
Total uses an ensemble of anti-virus systems to asses
each sample it is given. This produces more reliable
labels, as well as giving us a proxy for confidence in
those labels: a file which is identified as malicious by
20 of Virus Total’s constituent programs is more likely
to be malignant than one identified by only a single
anti-virus program. While it would have been preferable
to upload all of our data to Virus Total, a rate limit on
the API means it would take multiple months to process
the entire corpus. The results of this examination can
be seen in Table 6. The first line shows the percentage of
files marked as malware by ClamAV, and the remaining

5 https://www.clamav.net/
6 https://www.virustotal.com/

lines are the statistics of potentially mislabeled data
sent to Virus Total.

We can see for the goodware Group B data, ClamAV
marks almost all files as benign, with the test dataset
having a higher conflict of 1.4% of the data. Even if all of
such data was in fact mislabeled malware, the percentage
would be small enough that a robust machine learning
system should be able to learn from it. From the sample
sent to Virus Total, we can see that most files had no or
only a handful of anti-virus systems flag the files, giving
us confidence that ClamAV was throwing false positives
on the goodware data it identified as malicious. We note
as well that anti-virus products may, in general, throw
false positives for more challenging benign samples. A
benign application with more sophisticated code (e.g,
for performing encryption, just-in-time compilation, or
disk formatting) may seem malicious to an AV product
for good reason, despite having no malicious purpose
as an application. We have observed that a number of
the Group B test goodware files, marked by multiple
AVs, are products for encryption that do not have a
clear malicious intent. We avoid explicitly naming these
products due to privacy concerns.

While the Group B goodware samples sent to Virus
Total are more anomalous compared to those from the
training set, we are still confident in the majority of the
labels since we obtained. If we assume that all samples
marked by 6 or more AVs is in fact malware, then
Group B’s test set goodware would contain only 0.9%
mislabeled files. The maximal change in test accuracy is
thus less than one percentage point, and then would not
meaningfully impact any of the results or conclusions of
our work.

For the malware datasets, ClamAV fails to recognize
a much higher percentage as malicious: around 19% of
files for Group B and 33% for Group A. When uploading
samples that were not caught by ClamAV, every sample
was marked by at least one anti-virus. Most were marked
by a plethora of products (26 or more), with only a
handful being marked by less than 10. This again gives us

https://www.clamav.net/
https://www.virustotal.com/

REFERENCES 17

confidence that our labels are correct, and that ClamAV
is throwing false negatives.

As mentioned in our conclusion, the construction
and evaluation of a high quality dataset for this task
is still an open problem. We believe we have provided
ample evidence that our Group B data is of a better
quality than the datasets normally used (i.e., Group
A type data), but there is room for improvement in
validating and constructing yet larger corpora for this
task.

Table 7 ClamAV labels found in only the malware portion
of the Group A and Group B data. “Assorted Other” includes
obscure labels that had 5 or fewer occurrences in any dataset.

ClamAV Label B Train B Test A Train A Test

Dos.Trojan 0 0 18 4
BC.Win.Trojan 0 4 32 8
BC.Win.Virus 217 26 0 0
Heuristics.Encrypted 0 1 9 4
Heuristics.Trojan 1 10 400 104
Heuristics.W32 1 478 59 15
Js.Adware 16 0 0 0
Html.Trojan 0 14 0 99
Legacy.Tool 0 0 9 2
Legacy.Trojan 140 133 604 145
Pdf.Exploit 0 1 8 2
Win.Adware 77,613 7,551 1,924 454
Win.Downloader 306 353 14,250 3,599
Win.Dropper 74 67 2,834 672
Win.Exploit 15 16 588 180
Win.Ircbot 0 0 83 15
Win.Joke 0 0 63 26
Win.Keylogger 0 0 7 4
Win.Malware 10 3 5 4
Win.Proxy 0 0 148 31
Win.Spyware 75 285 8,579 2,089
Win.Tool 12 1 455 110
Win.Trojan 83,701 18,672 80,246 20,033
Win.Virus 52 573 177 42
Win.Worm 191 3,132 6,181 1,589
Assorted Other 5 1 15 6

We also look at the labels ClamAV produces for
the files it does recognize as malignant in the malware
data. These are shown in Table 7. We caution that the
labels should not be taken as an absolute ground truth;
ClamAV did not recognize a significant percentage of
each dataset as malware, and anti-virus products in
general do not always agree on the type of, or label
for, an individual datum. It is also important to note
that some of the labels are quite unexpected, indicating
JavaScript, PDF, and HTML malware. We reiterate
that all files in all of our datasets are valid PE files.
These labels are either faulty in their designation, or an
indication of our executables containing malware of a
considerably different nature would be anticipated.

Looking at the Group A and B data separately, and
comparing within group train and test sets, we see fairly

consistent patterns. Looking across groups, we do see
some distributional similarities and differences. Both
Groups A and B are comprised mostly of Trojans, and
do contain a significant amount of Adware. In Group B,
Adware is a close second for the malware type, where
Droppers make a far second for Group A. Group A seems
to have, in general, a wider array of malware types. It
is possible that the differences in distribution account
for some portion of the decrease in generalization when
applying a model trained on Group B to data from
Group A. At the same time, it is also important for a
model to generalize to novel data, which in this case
includes malware of a type never seen before.

Appendix B String Features

We include a few examples of the string features found.
We place these in the appendix as they have not yet
been fully analyzed or understood for their meaning.
Some were very long, and despite occurring many times
in our training data are thus unlikely to occur in new
novel malware. For example, the string “Cl8lgpHNMm
FBrO1rzHOloWOdjXN98PMI9inkJeYt8SxmqihhSpfFj
7VOP5e{BYbBZHRNwyPknt93{P3mPuCYDO6G{ew
Blbc9gLOQ” occurred 175,725 times in 780 files from
the Group B training malware. A number of strings
were simply the full function or DLL import names that
n-grams were trying to extract, such as KERNEL32.dll,
Sleep, ExitProcess, and MultiByteToWideChar. We also
see many strings at least claiming that the malware
is appropriately signed, like 1(c) 2006 VeriSign, Inc. -
For authorized use only1E0C. There are a number of
variations of different strings like this, where it may
have been better to select VeriSign as our feature rather
than the larger strings. N-grams implicitly do select this
smaller component rather than the text that happens
to be around it.

There are also simpler cases of the sub-string issue.
One example is the URL http://crl.comodoca.com/C
OMODOCodeSigningCA2.crl0r, which is found with
several different one-character differences appended to
this base URL. Another important note is that we see
many full URLs in the string data, and a better solution
would detect and process URLs differently. There are
also instances where the differences are a simple pattern
of replacement, such as protocol_not_supported versus
protocol not supported. There are also many patterns
where processing and removing repetition would collapse
many complicated strings into one or a few base strings.
For example a sequence of commas like “„„” occurs many
times with differing amounts of repetition.

18 REFERENCES

B.1 Extra String Graphs

The plots using string features (Figures 7 and 8) were
relatively similar when using Elastic-Net or L1 regu-
larization. Figures 9 and 10 show the same plots for
Elastic-Net for comparison. Also included is the aver-
age number of non-zeros added to the solution as C
increased (Figure 11).

10−5 10−4 10−3 10−2 10−1 100

0.7

0.8

0.9

1

C

A
cc

ur
ac

y

CV A Test B Test
6-gram A Test 6-gram B Test

Fig. 9 3-fold CV and test set accuracy using string features.
Trained using Elastic-Net regularization from group A data.

10−5 10−4 10−3 10−2 10−1 100

0.5

0.6

0.7

0.8

0.9

1

C

A
cc

ur
ac

y

CV A Test B Test
6-gram A Test 6-gram B Test

Fig. 10 3-fold CV and test set accuracy using string features.
Trained using Elastic-Net regularization from group B data.

10−5 10−4 10−3 10−2 10−1 100

100

101

102

103

104

C

N
um

be
r

of
N

on
-Z

er
os

Elastic A L1 A
Elastic B L1 B

Fig. 11 Average number of non-zero weights in solution vector
based on 3-fold cross validation across regularization path.
Feature space is string occurrences.

Appendix C N-Gram ASCII Decodings

Below we list some of the n-grams selected by models
early in the regularization path. The features selected
earliest in the path are those that the model found most
predictive of the 200k starting set. For legibility, we
remove some n-grams from some of the larger tables.
The n-grams removed either had no ASCII printable
tokens, or had the same ASCII printout when decoded
as another n-gram. In this case, the n-grams generally
differed in being shifted over one byte by the value 0x00.
We depict whitespace characters using the ‘␣’ symbol.
Only two tables for 4-gram models are included since
they are more difficult to read and interpret.

Table 8 13 6-grams selected by Lasso on group B

6-gram ASCII decoding

0000200000E0 ␣?
000000E0000F ?
726300000000 rc
4C33322E444C L32.DL
400000C02E72 @?.r
00004B45524E KERN
6B65726E656C kernel
00004C6F6164 Load
657450726F63 etProc
000047657450 GetP
000040000010 @
400000100000 @
004000001000 @

REFERENCES 19

Table 9 16 6-grams selected by Lasso on group A

6-gram ASCII decoding

4C0016000100 L
0000A9002000 ?␣
74000000A900 t?
004400000001 D
000000010056 V
000001005600 V
010056006100 Va
000100560061 Va
006F00720061 ora
43006F007200 Cor
0043006F0072 Cor
6F0072007000 orp
006F00720070 orp
720070006F00 rpo
00720070006F rpo
20004D006900 ␣Mi

Table 10 26 6-grams selected by Lasso on group A

6-gram ASCII decoding

6F61644C6962 oadLib
322E646C6C00 2.dll
726172794100 raryA
000040000010 @
400000100000 @
004000001000 @
690070007400 ipt
66007400AE00 ft?
000000004D00 M
000000A90020 ?␣
0074000000A9 t?
0000A9002000 ?␣
74000000A900 t?
004400000001 D
000000010056 V
000001005600 V
010056006100 Va
000100560061 Va
006F00720061 ora
43006F007200 Cor
0043006F0072 Cor
6F0072007000 orp
006F00720070 orp
720070006F00 rpo
00720070006F rpo
20004D006900 ␣Mi

Table 11 Subset of 58 6-grams selected by Elastic-Net on
group B. Some non-printable and repeated ASCII 6-grams
removed for legibility

6-gram ASCII decoding

46696C654E61 FileNa
745665727369 tVersi
200028007800 ␣(x
757465784100 utexA
000400040001
4500004C0103 EL
00004C010300 L
30000000E404 0?
813950450000 ?9PE
000002003030 00
C38B65E88B75 Ëe?u
FF0000FFFFFC ????
000058000080 X?
5F5E8BC35BC9 _^??[?
000300010000
000088000080 ??
000000004B45 KE
020000050001
0000200000E0 ␣?
0000E0000F01 ?
00E0000F010B ?\n
007800650000 xe
000000E0000F ?
59C38B65E88B YËe?
656C3D227265 el="re
76656C3D2272 vel="r
6C3D22726571 l="req
000001000300
717569726541 quireA
726541646D69 reAdmi
756972654164 uireAd
69726541646D ireAdm
726300000000 rc
454C33322E44 EL32.D
4B45524E454C KERNEL
45524E454C33 ERNEL3
524E454C3332 RNEL32
4C33322E444C L32.DL
4E454C33322E NEL32.
656C33322E64 el32.d
6C33322E646C l32.dl
400000C02E72 @?.r
300000006000 0‘
600000000100 ‘
00004B45524E KERN
6B65726E656C kernel
004C6F61644C LoadL
322E646C6C00 2.dll
33322E646C6C 32.dll
00004C6F6164 Load
657450726F63 etProc
000047657450 GetP
000040000010 @

20 REFERENCES

Table 12 Subset of 74 6-grams selected by Elastic-Net on
group A. Some non-printable and repeated ASCII 6-grams
removed for legibility

6-gram ASCII decoding

647265737300 dress
322E646C6C00 2.dll
617279410000 aryA
627261727941 braryA
726172794100 raryA
000000002E72 .r
0000002E7273 .rs
00002E727372 .rsr
002E72737263 .rsrc
010006000100
03004D005500 MU
004D00550049 MUI
0000004D0055 MU
550049000000 UI
000040000010 @
400000100000 @
004000001000 @
006500730063 esc
006F00700079 opy
006500670061 ega
007900720069 yri
007000790072 pyr
006E002E0020 n.␣
73006F006600 sof
740020004300 t␣C
0000004D0069 Mi
690063007200 icr
6F0073006F00 oso
160001004300 C
001600010043 C
660074002000 ft␣
0072006F0073 ros
004D00690063 Mic
000000004D00 M
0000004C0016 L
000000A90020 ?␣
0074000000A9 t?
0000A9002000 ?␣
0020004D0069 ␣Mi
440000000100 D
000001005600 V
010056006100 Va
000100560061 Va
6F0072006100 ora
43006F007200 Cor
0043006F0072 Cor
6F0072007000 orp
720070006F00 rpo
20004D006900 ␣Mi

Table 13 Subset of 64 4-grams selected by Lasso on group
A. Some non-printable and repeated ASCII 4-grams removed
for legibility

4-gram ASCII decoding

436C6F73 Clos
74610000 ta
6C654100 leA
00457869 Exi
4C696272 Libr
47504144 GPAD
322E646C 2.dl
8A526963 Ric
61727941 aryA
50726F63 Proc
00002E72 .r
4D006900 Mi
00200043 ␣C
00A90020 c©␣
006E0037 n7
55004900 UI
0073006F so
AE002000 R©␣

Table 14 Subset of 80 4-grams selected by Lasso on group
B. Some non-printable and repeated ASCII 4-grams removed
for legibility

4-gram ASCII decoding

74616D70 tamp
69006700 ig
72617469 rati
696D6520 ime␣
00650064 ed
68616E67 hang
6E61626C nabl
4D006500 Me
6F667420 oft␣
636F6D6D comm
5F6F6E65 _one
6C696461 lida
69646174 idat
6E74696D ntim
2E706462 .pdb
6F647563 oduc
0041006C Al
6D616C6C mall
72616D65 rame
7465726D term
696F6E73 ions
3A2F2F73 ://s
5554462D UTF-
3D227265 ="re
6C3D2272 l="r
72654164 reAd
6541646D eAdm
2E637274 .crt
3C2F7365 </se
666F2078 fo␣x
2F747275 /tru
2F726571 /req

	Introduction
	Related Work
	Data
	Feature Selection and Model Building
	N-Gram Evaluation
	Discussion
	Conclusion
	Group B Data Labels
	String Features
	N-Gram ASCII Decodings

