Owned or pwned? no peekin' or tweakin'!

By Richard Zak and Nick Vidal

TABLE OF CONTENTS

02

Hardware

O1 Confidential Computing

Confidential Computing

"Confidential Computing protects data in use by performing computation in a hardware-based Trusted Execution Environment. These secure and isolated environments prevent unauthorized access or modification of applications and data while in use, thereby increasing the security assurances for organizations that manage sensitive and regulated data."

Protections for Data...

At Rest

File encryption on HD/SSD or Cloud Storage

In Use CPU/Memory (TEEs)

In Transit

HTTPS (Browser ⇔ Server) End-to-End

Data Protection

Data Integrity

Y

Code Integrity

Advantages

No Peekin'

Data & Code Confidentiality

No Tweakin'

Data & Code Integrity

Even if host is compromised Internal/external threats

Hardware

Architectures

Process Based

Intel SGX RISC-V Sanctum

UM Based

AMD SEV IBM PEF ARM Realms Intel TDX

CPUs (early gen)

2012

 \blacklozenge

Secure OS (Two Worlds)

Intel SGX

2015

Isolated Apps (Enclave)

AMD SEU Isolated VMs

2020

IBM PEF Isolated VMs

2021

 \blacklozenge

E STATE

CPUs/GPUs (next gen)

EPYC Milan

Intel SGX Xeon Ice Lake

2021

NUIDIA HIOO Hopper

2022

T-T-T-T-T

Cloud: next gen general availability

- -

Enarx

Enarx

Open Source

Leading framework for running applications in TEEs (Trusted Execution Environments).

Easy Deployment

Provides a run-time TEE based on WebAssembly, allowing developers to deploy apps from various languages

Hardware Neutral

CPU-architecture independent, letting developers deploy the same app binary transparently across multiple targets, different architectures.

WebAssembly

Security

Its sandbox model offers an extra layer of protection, isolating the application from the host.

Performance

It's statically typed and designed to be encoded in a size- and load-time-efficient binary format highly optimized for performance.

Portability

It's designed to be executable efficiently on a variety of operating systems and instruction set architectures, on the Web and off.

Enarx Architecture

Enarx Keep

Sets up the TEE & runs the app

Drawbridge

Acts as a repo for WebAssembly apps

Steward

Performs attestation & provides crypto cert

Host

Hosts app & data, but is untrusted

Security Principles of Enarx

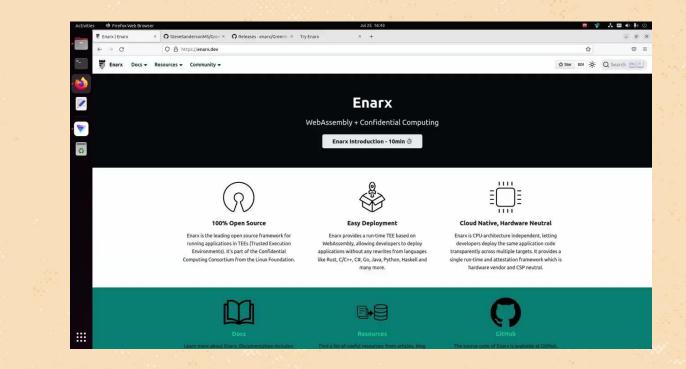
- 1. Minimal Trusted Computing Base
- 2. Minimum trust relationships
- 3. Deployment-time portability
- 4. Network stack outside TCB
- 5. Security at rest, in transit, and in use
- 6. Auditability
- 7. Open source
- 8. Open standards
- 9. Memory safety
- 10. No backdoors

Demo

Try Enarx @ try.enarx.dev

Enarx secured by O Profian

🗘 GitHub 👳 Chat 🔉 Blog 😏 Twitter


Try Enarx

Run a **Wasm** workload using **Confidential Computing**. Watch the video and start now or choose a **platform**.

Greenhouse Monitor

Cryptle

Hack Challenge

THANKS! Please star our project: github.com/enarx/enarx

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Why WebAssembly?

- I. <u>Minimal Trusted Computing Base</u>
- 2. <u>Minimum trust relationships</u>
- 3. <u>Deployment-time portability</u>
- 4. Network stack outside TCB
- 5. Security at rest, in transit and in use
- 6. <u>Auditability</u>
- 7. <u>Open source</u>
- 8. Open standards
- 9. Memory safety
- 10. No backdoors

Why Rust?

- 1. Minimal Trusted Computing Base
- 2. Minimum trust relationships
- 3. Deployment-time portability
- 4. Network stack outside TCB
- 5. Security at rest, in transit and in use
- 6. <u>Auditability</u>
- 7. <u>Open source</u>
- 8. Open standards
- 9. <u>Memory safety</u>
- 10. No backdoors

Why Open Source?

- 1. <u>Minimal Trusted Computing Base</u>
- 2. Minimum trust relationships
- 3. Deployment-time portability
- 4. Network stack outside TCB
- 5. Security at rest, in transit and in use
- 6. <u>Auditability</u>
- 7. <u>Open source</u>
- 8. Open standards
- 9. Memory safety
- 10. <u>No backdoors</u>